Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Document Type
Year range
1.
Rev Esp Anestesiol Reanim ; 69(9): 544-555, 2022 Nov.
Article in Spanish | MEDLINE | ID: covidwho-2105814

ABSTRACT

Background: The severe acute respiratory syndrome-coronavirus 2 pandemic pressure on healthcare systems can exhaust ventilator resources, especially where resources are restricted. Our objective was a rapid preclinical evaluation of a newly developed turbine-based ventilator, named the ACUTE-19, for invasive ventilation. Methods: Validation consisted of (a) testing tidal volume delivery in 11 simulated models, with various resistances and compliances; (b) comparison with a commercial ventilator (VIVO-50) adapting the United Kingdom Medicines and Healthcare products Regulatory Agency-recommendations for rapidly manufactured ventilators; and (c) in vivo testing in a sheep before and after inducing acute respiratory distress syndrome by saline lavage. Results: Differences in tidal volume in the simulated models were marginally different (largest difference 33 ml [95% CI 31 to 36]; P < .001). Plateau pressure was not different (-0.3 cmH2O [95% CI -0.9 to 0.3]; P = .409), and positive end-expiratory pressure was marginally different (0.3 cmH2O [95% CI 0.2 to 0.3]; P < .001) between the ACUTE-19 and the commercial ventilator. Bland-Altman analyses showed good agreement (mean bias -0.29 [limits of agreement 0.82 to -1.42], and mean bias 0.56 [limits of agreement 1.94 to -0.81], at a plateau pressure of 15 and 30 cmH2O, respectively). The ACUTE-19 achieved optimal oxygenation and ventilation before and after acute respiratory distress syndrome induction. Conclusions: The ACUTE-19 performed accurately in simulated and animal models yielding a comparable performance with a VIVO-50 commercial device. The ACUTE-19 can provide the basis for the development of a future affordable commercial ventilator.

2.
Rev Esp Anestesiol Reanim (Engl Ed) ; 69(9): 544-555, 2022 11.
Article in English | MEDLINE | ID: covidwho-2069621

ABSTRACT

BACKGROUND: The Severe Acute Respiratory Syndrome (SARS)-Coronavirus 2 (CoV-2) pandemic pressure on healthcare systems can exhaust ventilator resources, especially where resources are restricted. Our objective was a rapid preclinical evaluation of a newly developed turbine-based ventilator, named the ACUTE-19, for invasive ventilation. METHODS: Validation consisted of (a) testing tidal volume (VT) delivery in 11 simulated models, with various resistances and compliances; (b) comparison with a commercial ventilator (VIVO-50) adapting the United Kingdom Medicines and Healthcare products Regulatory Agency-recommendations for rapidly manufactured ventilators; and (c) in vivo testing in a sheep before and after inducing acute respiratory distress syndrome (ARDS) by saline lavage. RESULTS: Differences in VT in the simulated models were marginally different (largest difference 33ml [95%-confidence interval (CI) 31-36]; P<.001ml). Plateau pressure (Pplat) was not different (-0.3cmH2O [95%-CI -0.9 to 0.3]; P=.409), and positive end-expiratory pressure (PEEP) was marginally different (0.3 cmH2O [95%-CI 0.2 to 0.3]; P<.001) between the ACUTE-19 and the commercial ventilator. Bland-Altman analyses showed good agreement (mean bias, -0.29, [limits of agreement, 0.82 to -1.42], and mean bias 0.56 [limits of agreement, 1.94 to -0.81], at a Pplat of 15 and 30cmH2O, respectively). The ACUTE-19 achieved optimal oxygenation and ventilation before and after ARDS induction. CONCLUSIONS: The ACUTE-19 performed accurately in simulated and animal models yielding a comparable performance with a VIVO-50 commercial device. The acute 19 can provide the basis for the development of a future affordable commercial ventilator.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Sheep , Animals , COVID-19/therapy , Ventilators, Mechanical , Tidal Volume , Respiratory Distress Syndrome/therapy , SARS-CoV-2
3.
J Clin Med ; 10(11)2021 May 27.
Article in English | MEDLINE | ID: covidwho-1266749

ABSTRACT

OBJECTIVE: To address the issue of ventilator shortages, our group (eSpiro Network) developed a freely replicable, open-source hardware ventilator. DESIGN: We performed a bench study. SETTING: Dedicated research room as part of an ICU affiliated to a university hospital. SUBJECTS: We set the lung model with three conditions of resistance and linear compliance for mimicking different respiratory mechanics of representative intensive care unit (ICU) patients. INTERVENTIONS: The performance of the device was tested using the ASL5000 lung model. MEASUREMENTS AND MAIN RESULTS: Twenty-seven conditions were tested. All the measurements fell within the ±10% limits for the tidal volume (VT). The volume error was influenced by the mechanical condition (p = 5.9 × 10-15) and the PEEP level (P = 1.1 × 10-12) but the clinical significance of this finding is likely meaningless (maximum -34 mL in the error). The PEEP error was not influenced by the mechanical condition (p = 0.25). Our experimental results demonstrate that the eSpiro ventilator is reliable to deliver VT and PEEP accurately in various respiratory mechanics conditions. CONCLUSIONS: We report a low-cost, easy-to-build ventilator, which is reliable to deliver VT and PEEP in passive invasive mechanical ventilation.

SELECTION OF CITATIONS
SEARCH DETAIL